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1 .  Introduction 

n3 
68 In [ 13 Sameh & Brent have shown that, given - + O(n2) processors, a triangular system of n 

equations .4x = b may be solved in O( log*n) steps. They have also shown that if; is the computed 

solution then it satisfies the equation (A + 6A,,)*<= 6, where 6A, is bounded by , 

I Ihrl, I 15 x ( ~ ) E K ~ ( A )  I I .4 I I . Here, I I . I I stands for the co-norm, a(n) = O(n*logn), E is the unit 

roundoff, ~ ( ~ 1 )  is the condition number of A. On the otherhand, if is the solution computed by 

the standard sequential algorithm, then it satisfies[2] the equation (-4 + SA,); = 6,  where 

I I 6,4, I I 5 ns I I ,.I I I. Thus the bound on I I 6A,, I I can be very large compared to that on I I 6,l; I I. 

In this paper we present an alternative approach to the error analysis of these two algorithms 

and show that the pardel algorithm described by Sameh and Brent is essentially equivalent to the 

usual scquential one in terms of our error complexity measures. Some numerical experiments 

c o n f i g  the theoretical prediction are also presented. 

2. Some Preliminary Results 

Given a normalized floating-point system with a t-digit base p mantissa. the additive and mul- 

tiplicative operations can be modelled by the following equations [2]: 

(2.1) 

where 

for rounded operation 
l h l , l A l  I I + U .  u s  

/I1-' for chopped operation 

and x and y are given machine floating-point numbers and J(.) is used to denote the computed 

floating-point result of the given argument. We shall call A( or 5 )  the unit A( or 6 )-factor. 
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In general, one can apply (2.1) repeatedly to a sequence of division-free computational steps, 

and the computed result z can be expressed as: 

where each z/ is an exact product of error-free data, and Ak (or 6k ) stands for the product of k 

possibly different A ( or 6)-factors. Following [3], we shall henceforth call such an exact product 

of error-free data a basic term. A(z) is then the total number of basic terms whose sum constitutes 

2. 

Sote that in (2.2), the computed I is expressed as the exact sum of A(z) perturbed 5's. Thus 

the size of o/ (or 5,) is an indication of the possible number of round-off occurrences during the 

computational process. We define the following two measures: 

maximum error complexity: 

cumulative error complexity: 

o(z) = max [oj + Z,] 
1 Q"s l (2 )  

. ,  
s(2) E Z [ O j  + Zj] 

j= 1 

Different aigorithms used to  compute the same quantity 

can then be compared using the above error complexity measures. 

From (2.3) and (2.4) we can further define the following: 
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(2 .5)  

(2.6) 

* 
u,(z) = max uj , u,(z) = max uj 

1 Q & A ( Z )  1 ySrl(2) 

j= 1 j= 1 

Thus o,(z), so@) or a&), s,(z) are error complexities due to additive or multiplicative operations. 

In other words, u,(zj, so(::) or QJZ)  ,s,(z) are ~ ( z ) ,  s(z) evaluated assuming exact multiplications or 

additions, respectively. ~ J s o ,  
~ 

Applying (2.3) and (2.4) ':o (2.1), it is straightforward to establish the following lemma [4]: 

Lemma 2.1 If z =fZ(x k y ) ,  then 

If z =fl(x x y),  then 

(ii) ~ ( z )  = 1 + ~ ( x )  + ab), 

i ( z )  = /i(x)A(y). 
s(2) = S(X)E.b) + S(Y)A(.r> + A(z), 

Often it is more convenient to express a computed result in terms of a sum of some intermediate 

results. In such cases, we have the following lemma[S]: 

Lemma 2.2 If the computed result z can be expressed as 
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where each z, is a product of intermediate results, then 

In general a basic term is of the form 

k 

i= 1 

where each x, is a single distinct error-free data. We shall now define the multiplicative index of 

x, or p ( x ) ,  as follows: 

k 

p(x)  = E a i  - 1 
i= 1 

In other words, p ( x )  is Simply the number of sequential multiplications needed to form x. We need 

the following lemma[j]: 

Lemma 2.3 Let 

then 
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1,cmma 2.3 simply statcs that the multiplicative error complexities arc invariant to the algorithms 

used t o  form z, provided that only multiplications are used. We now establish the following lemma: 

1,cmma 2.4 Given basic terms u, b and it is desired to form 

c =/i'(a & b), 

then 

provided only associative laws are dowed to find c and the computation of the type a + ab is not 

evduatcd by u(l + b). 

Proof 

ratoly before thc final addition. Dy Lemma 2.2 we have 

If there are no common factor bctwcen u and h, then (I and b have to be evaluated sepa- 

I lence 

Dy clctinition 

Q,(4 = m 4 4 4  ,dN, SJC) = P(U) + P(b). 

Ilencc the lemma is truc. 

If  there is a common factor, say X, between a and 6, then 

- - - - 
a = xu ,  b = x b ,  a ,  b # I ,  

and one might choose to compute c as 
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- 
oncefl(x),fl(-?),fb) arc computed. Now by (2.1) 

Hence by definition 

and 

By repeated application of Lemma 2.4 to the evaluation of (2.2) we can easily establish the 

following theorem: 

Theorem 2.1 The computed z of (2.2) is such that 

o,(z) = max p ( z j ) ,  
I9 ' i<A(z) 

j= 1 

In other words, Theorem 2.1 states that the multiplicative error complexities are invariant to the 

algorithms uscd to evaluate z. IIenceforth we shall only look at the additive error complixities in 

the evaluation of different algorithms for the computation of the type of (2.2). This is equivalent 

to having exact multiplication operations possible for the computation of (2.2). We need the fol- 

lowing theorem: 
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Theorem 2.2 If in ( 2 . 2 )  2(z) = 2' and 2' - 1 additions are used to evaluate z, then 

aJz) 2 k ,  SJZ) 2 k P .  

- Proof l h c  computation of z in ( 2 . 2 )  is equivalent to the construction of a binary tree with 2.' 

leaves at the top and 2k - 1 interior nodes of additions with z the output of the bottom root node. 

In such case thcn a,(,?) is the height of the tree and sa(,") is the sum of the lengths of all the paths 

from thc leaf nodes to the root node. Q.E.D. 

An important type of computation of (2.2) is the evaluation of the inner product given as 

(2.7) 

wc need to specify the order in whlch the additions are executed. We discuss several strategies. 

If the products are added recursively in parallel by divide-and- conquer, then the strategy is called 

left-heaby if 

where 

Similarly the strategy is called right-heavy if 
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If the inner product is summed up in sequential order, then we have the common strategies of 

left-to-right or right-to-left. 

We now establish the following theorem: 

Theorem 7.3 Assuming exact multiplications are possible in evaluating the x , , y ,  and XJ, of 

( 2 . 7 )  and 

(2.5) 

then the computed z of (2.7) is such that 

where 

[log k l  if the strategy is left-heavy, 

Llog k_l if the strategy is right-heavy, 
k - 1 if the strategy is left-to-right, 
1 if the strategy is right-to-left. 

Proof 

obtain 

We first consider the last two cases. If the strategy is left-to-right , then we can easily 

Hence we have 

and the theorem is true. 

If the stratcg is right-to-left, then we have 
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For the parallel strategies, we prove by induction. For k = 1 the theorem is trivial. Assume it 

is true for k - 1 expressed as 

k - 1 = pjpj-l...plpo, pj = 1 

in binary form. For k then if the strategy is left-heavy, we have 

By assumption 

Q ~ ( Z )  = 1 + max(aL, uR) 

= + + 1 + riog rk/211, 

where 
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Since 

Hence 

And we have 

OAWNAE PAGE 1s 
OF POOR QUALITY 

Therefore 

So the theorem is true. Similar reasoning can be used to show the truth of the theorem for the 

right-heavy strategy. Q.E.D. 

3.  Error Complexity Analysis 

Gven a unit-diagonal lower trim-gular system 

(3.1) A X  = b 

where 
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then the exact solution x, can be expressed as 

(3.2) 

1 

a21 1 . .  . 

ai, . . . 

Thus the evaluation of x, is equivalent to the evaluation of the determinant of an i by i lower 

Hessenberg matrix with unity super-diagonal elements. We assume the given A and b are error free 

origjnal data with A(u,,) = i(b,) = 1 and p(u,,) = p(bJ = 0 . Denoting by t, the generic computation 

of such a matrix, then it is easily shown (by expanding the first row of the above determinant) that 

where w is error-free. It is obvious that 

hence 

(3.4) i ( t i )  = 2i-1. 

Furthermore we have the following lemma 

Lemma 3.1 The computation of ti requires at most 2-1 - 1 additive operations. 

Proof 

(3.3) that 

Denoting ai as the number of additive operations needed to compute ti ; it is obvious from 

ai = 2ui-, + 1, al = 0. 

12 

The solution is given as 

i- 1 q = 2  -1 .  



This proves the lemma. Q.E.D. 

Lemma 3.1 tozether with (3.4) and Theorem 2.2 gives us the following theorem: 

Theorem 3.1 The computation of x, requues at most a totd of 2-I - 1 additive operations 

with 

The solution of (3.1) can also be expressed as the following: 

where 

T Mi = I - aiel , 

T 
4; = [O (  1x1, U i + l , i ,  ... , ani] 

and e, is the i-th column of the identity matrix I .  Note in the above expression we use a(b:c) to 

denote 3 sub-vector of identical component a placed in the b-th to c-th positions of a larger vector. 

The usual sequential algorithm can then be expressed as 

or more specifically, 
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f o r i =  1 to n do 
x!') = bj 

J 
f o r i =  1 to n d o  

(i-1) 

f o r i =  1 to i do 

x. = x. 
l 1  

x(i) = .Ji- 1 ) 
J J  

f o r j = i +  1 to n d o  
xy) =j7(xj 0-1) - cz,, J& (i-1) ) 

We have the following lemma: 

Lemma 3.2 The computation of x(') is equivalent to the computation of 

T t(" [ t ,  t2 ... ti ti+'(i + ~:n) 3 

Proof 

J( t ,  + t,t,) which is ti+, by definition. 

We only need to notice that the inner loop computation of (3.6) is essentially of the type 

Q.E.D. 

Applying Lemma 2.1 (i) to the inner loop of (3.6) and assuming exact multiplications, we have 

f o r j > i  

The solutions to the above equations are given in the following theorem: 

Theorem 3.3 The sequential algorithm of (3.6) produces results such that fo r i  > i 
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Comparing the results in the above theorem to those in Theorem 3.1, we conclude that the 

sequential algorithm is optimal in terms of having the minimal maximum and cumulative error 

complexities. 

We now turn our attention to the parallel algorithm as proposed by Sameh and BrentCI]. The 

algorithm for n = 2y is given as follows: 

(3.7) 

First the A matrix of Mio) can easily be obtained as: 

where 

E(ak) = [O(l:k), l(k + l:n)]'. 

Then we have the following theorem: 

Theorem 3.3 

where 

15 



p = k P '  - 1, 9 = 2' - p - 2' '+ 1 

1 
2O 1 . . .  . .  . .  [: 221T' -2 . . 2 O 1  

- 1  221+1 -2 .*. 20 !]} qrows 
-1 $+I-2 

2 ... 2O 

and ,i(Ls7p1)) and I.( Vt-')) are the fust 2'*l and the last q - 2)+' rows of I.(Rg+I)) , respectively. 

Proof See Appendix I. 

If we define a(A)  as a matrix whose (ijl-th component is a(u,,) then we have the following 

theorem: 

Theorem 3.4 a(.\&-')) is of the same structure as that of A(,&*')). Furthermore let 

azh the (g,h)-th element of O ( - W ~ * ~ ) )  , then we have 

p + l I h < p + P ' ,  p + l ~ g < 2 ' - p  
> O i f g - h 2 2  
= 0 otherwise 

I .  

Proof See Appendix 11. 

With the general property established in Theorem 3.4, we have the following theorem for 

a(x): 

Theorem 3.5 If in (3.7) the h e r  products are evaluated using either the left-heavy or the 

right-heavy strategy, then the computed x is such that 
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a,(xi) I 1.5(i - 1) 

Proof 

struction 

At the ( j +  1)-th step let us denote by mZh the (g,h)th component of M ~ ~ .  Now by con- 

To calculate 

we have 

For i = 2; we have 

where the summation (inner product) is evaluated by either the left-heavy or the right-heavy parallel 

strategy. Sow by assumption 

Hence by Theorem 2.3 we have 
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The solution to.the above equation is given as 

"a(xp')  = 3(9) - j  - 2, 0 l j  + 1 2 v 

I For general i we also have by Theorem 2.3 that 

where I .  I is used to denote either r.1 or 1.1 

sow if 

, 
then a,(x,) can further be expressed as 

If the inner products are evaluated in a sequential manner, then similar reasoning can be used 

to establish the following theorem: 

Theorem 3.6 If in (3.7) the inner products are evaluated in sequence, then the computed x is 

such that 
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(i) if the strategy is left-to-right, then 

(ii) if the strategy is right-to-left, then 

",(xi) = i - 1 

g - A -  1 i f g - h 2 2  p +  1 d l < p + y ,  
0 otherwise p + l l g _ < 2 " - p  

5gh = 

where ogh is used to denote the (g,hj-th element of o,(.WY)) and p = k2-I - 1. 

We can now summarize the results as follows: 

= i - 1 If the strategy is right-to-left or the algorithm of (3.6) is used, 

I rlog ii (2 r logil 4) if the strategy is left-to-right. 

1.5(i - 1) if  the strategy is left-hemy or right-heavy, (3.8) ",(Xi> 

The cumulative error complexities can then be bounded using (3.5) as follows: 

= (i - 1 ) f - I  If the strategy is right-to-left or the algorithm of (3.6) is used, 

- < 2i-1 rlog il(3 r'ug i' - ' )  if the strategy is left-bright. 

5 1.5(i - l)2i-1 i f  the strategy is  left-hea\y or right-heavy, 

We conclude that the parallel algorithm (3.7) is as accurate as the sequential algorithm (3.6) if 

the parallel inner products are evaluated using the stratea of right-to-left. For other strategies we 

can easily obtain from (3.8) and (3.9) that 

.,(xi) resulting from (3.7) 
aa(xi) resulting from (3.6) 

1.5 if the s t r a t t z  is left-heavy or-right-heaw, 

rlog 4 if the strategy is left-to-right. 

sa(xi).resulting from (3.7) 
Ja(Xi) resultin2 from (3.6) 

1.5 if  the s t r a t w  is left-heavy or right-heavy, 

rlog il if the strategy is left-to-right. 
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Hence in all cases the parallel algorithm is essentially ’equivalent’ to the usual sequential algorithm 

in terms of our error complexity measures. 

4. Numerical Experiments and Conclusion 

In the first experiment a 6-1 by 64 lower triangular system satisfying 

xi+ 1 = 4xi - xi-1 + 1, X I  = 1, x, = 5 

is solved in Pascal shortreal using an IBM 370 machine. The unit round-ofT is 16-’. If we denote 

by exeq(xL) and epa,(x,) , respectively, the absolute error of x, produced by the sequential and parallel 

algorithm, then a selected sample of errors is shown below: 

k 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

(X4k)  

0 
0 
0 

3.68E02 
2.26E05 
8.52E07 
2.15E10 
4.50E 12 
1.02E15 
2.40E17 
5.lOE19 
1.08E22 
2.29E24 
475E26 
1.04E29 
2.38E31 

epar(X4k) 

0 
0 
0 

8.80E02 
2.9 1 E05 
5.16E07 
6.99E09 
1.4SE12 
3.02614 
5.97E16 
1.07E19 
2.58E21 
4.78623 
1.071526 
2.47 E28 
4.80E30 

For the second experiment a set of 100 random lower triangular matrices A with unit diagonal 

elements and 100 vectors b are generated such that 

The systems are solved using an IBM PC with an 8087 coprocessor. The unit round-off is 243. 

The cumulative absolute error of all x, produced by the sequential and parallel algorithm are re- 

presented by cex,(xl) and cepa,(xl), respectively. A selected set of errors is given below: 
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k ce,eq(& 

1 5.16E - 6 
2 3.52E - 5 

1 9.85E - 4 
5 5.76E - 3 
6 3.29E - 2 
7 1.75E- 1 
8 8.45E- 1 
9 4.3EO0 

10 1.79EO 1 
11 9.43EO1 
12 5.69E02 
13 3.121503 
1 1  1.571504 
15 8.90 EO4 
16 4.6 1 EO5 

3 1.83E - 4 

Cepar(-y4k) 

3.88E - 6 
3.16E - 5 
1.91E- 3 
1.02E - 3 
5.37E - 3 
2.75E - 2 
1.74E - 1 
7.42E - 1 
3.17EO0 
1.85EOl 
9.10EO1 
5.12E02 
2.3 6EO3 
1.67 E04 
6.61E04 
4.67EO5 

We see from the above tables that the numerical results produced by the parallel algorithm are 

as accurate as those produced by the usual sequential algorithm. In the fust experiment the parallel 

results can even be classified as slightly ’better’ than the sequentid ones. 
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Appendix I. Proof of Theorem 3.3 

To show the validity of 

( A .  1) 1 (.C$+ )) = J. ( 'C/ f i+ ) 1 (.Cf$), 

we fxst show that for general matrix multiplication 

C=fr!ii x B), A E Rmxn, B E Rnx', CE Rmxr,  

we have 

j.(C) = A(A)E(B). 

By defmition 

then we have, by repeated application of Lemma 2.1, 

k= 1 

So we have 

A ( C )  = E(A)).(B). 

The validity of (-4.1) can then be shown by direct substitution of the results for 

l.(Abf~~+,) and j.(.Cf!j) and l(.bQA')) into (A. 1). Q.E.D. 
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Appendix 11. Proof of Theorem 3.4 

First of all , the nontrivial part of crc(Mt+l)) is of the same structure as that of I . ( M t + l ) ) .  Fur- 

thermore, the diagonals and subdiagonals of j.(Mt+l)) consist of only one basic term each. Hence 

no additive operations are involved. And we have 

> O  i f g - h 2 2 ,  p + I < h < p + $ + l ,  p +  l < g < 2 " - p .  
= 0 otherwise. 

Let us assume that the rest of the theorem is true for .bfyl.+l and iMj'l . h o w  

where 

The submatrices QL, J!J~+] in LP-') and RW,, in Rj*l) wd retain the same properties as stated in the 

theorem. Let 

and 
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with 

bn(u,n) = a,(uz,> = ... = .,(Urn,) = on > a,+, 

Hence by Theorem 2.3 we have 

where 

rlog ml if the strategy is left-heavy, 

Llog mJ if the strategy is right-heavy, 
k - 1 if the strategy is Ieft-to-right, 
1 if the strategy is right-to-left. 

w(m) = 

by assumption. Hence the ordered property for the 0's in Lt") is preserved. A similar argument 

can also be used to show the same property is true for the matrix &'+I). Q.E.D. 
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